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serted sulfur atoms [19], these in vitro studies were not with sulfur insertion are presently only speculative in
both of these enzyme systems. In addition, the exactwholly consistent with this premise. The authors were

unable to show formation of a lipoyl-ACP intermediate mechanism by which SAM is cleaved to generate a 5�-
dA• is currently unknown in all Radical SAM enzymesby conducting the reaction in the absence of LipB and/

or apo-PDC. [16]. The conclusions reached by Zhao et al. now enable
these questions to be addressed because they resolveThe article by Zhao et al. in last month’s issue of

Chemistry & Biology firmly establishes that the preferred the major issue and limitation associated with lipoyl syn-
thase: the nature of the true substrate.substrate for LipA is not octanoyl-ACP but octanoyl-E2

[20]. By extension of this finding, it can be assumed
that LipA has multiple substrates, which are the lipoyl- Squire J. Booker
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plex between squalene-hopene cyclase and the sub-Profound Insights
strate analog 2-azasqualene [13].into Squalene Cyclization
A classic example of the interface between chemistry
and biology is the carbocationic transformation of squa-
lene and (3S )-2,3-oxidosqualene to polycyclic triter-
penes. In 1955, seminal papers were published that de-In this issue of Chemistry & Biology, our understanding

of the formation of pentacyclic hopene from the linear scribed the chemical mechanism of the cyclization
reaction [1, 2]. These studies highlighted important reac-squalene is enhanced by an X-ray structure of a com-



Previews
13

Figure 1. Scheme Depicting the Cyclization of Squalene to Hopene
by the Squalene-Hopene Cyclase

tions carried out by the prokaryotic squalene-hopene
cyclase (SHC) (Figure 1, 1), the oxidosqualene-lanosterol

Figure 2. Scheme Depicting the Cyclization Reactions Carried Outcyclase (Figure 2, 2), and the oxidosqualene-cyclo- by Oxidosqualene-Lanosterol Cyclase (2) and Oxidosqualene-
artenol cyclase (Figure 2, 3). Cycloartenol (3)

These and other cyclization reactions generate a trea- Both enzymes use (S)-2,3-oxidosqualene as a substrate.
sure trove of more than 100 triterpenes, which are impor-
tant by themselves or after further conversion as plant
surface components, phytoalexins, membrane rigidi- usual protein stabilization energy [7]. Seven to eight

nontandem repeat motifs (QW motifs) seem to help thefiers, raft components, hormones, and pheromones.
Furthermore, some triterpenes serve as molecular fos- enzyme maintain its integrity [7, 8]. The energy released

may actually help to melt lipophilic side chains in thesils, facilitating dating and diagenesis of early mem-
brane-bound life trapped in sediments [3]. The oxygen channel through which the bulky product exits. The very

low turnover number of 0.3�sec correlates with the intri-component of oxidosqualene (see Figure 2) is intro-
duced by a monooxygenase reaction from molecular cate structure of the enzyme. It is conceivable it takes

a long time to thread squalene into and through theoxygen. Since molecular oxygen appeared in significant
concentrations only relatively late on our planet, i.e., channel, to fold the compound correctly in the catalytic

cavity, and for pentacyclic hopene to leave the cavityafter the invention of oxygenic photosynthesis by cyano-
bacteria, all compounds derived from oxidosqualene are after transformation.

To date, the most extensively studied triterpene cy-considered late innovations in evolution [4]. Conse-
quently, it is logical to propose that most of them were clase is SHC from the thermophilic bacterium Alicyclo-

bacillus acidocaldarius, which is easily cultured at 60�Cnot necessary for early forms of life.
As shown in Figure 1, nature had already invented [9, 10]. Georg Schulz and coworkers solved the X-ray

structures of this enzyme at 2.9 and 2.0 Å resolution [8,an oxygen-independent pathway for synthesizing cyclic
triterpenes. In a large number of Bacteria (not yet in 11, 12]. However, our understanding of the nature of the

specific interaction between squalene and the enzymeArchaea), squalene is directly cyclized to hopene by
SHC (Figure 1), an evolutionary progenitor of oxidosqua- catalytic cavity has been hampered by the lack of a

crystallized enzyme:substrate complex.. In this issue oflene cyclases [4]. Strong evidence for this comes from
phylogenetic trees for eukaryotic and prokaryotic sterol Chemistry & Biology, the Schulz group presents data

that overcomes this obstacle by cocrystallizing SHCcyclases, which have their root in SHC [5].
Nature’s one-step reactions are fascinating in their with 2-azasqualene, a very near structural analog of

squalene [13] (Figure 3).complexity: in each of the cyclization reactions dis-
cussed here, four to five rings were formed, seven to The structure of the folded substrate is now “visible”

at 2.13 Å resolution, and the amino acid environment ofnine stereocenters were established, and 14 or more
covalent bonds were opened and closed. However, the the catalytic cavity that houses its carbon skeleton is

established, permitting a better interpretation and calcu-squalene-hopene cyclase also generates side products
[6], including diplopterol and, in significantly lower con- lation of properties of existing mutant SHCs ([14, 15]

and citations therein) and even of mutant oxidosqualenecentrations, a variety of 6,6,6,5-tetracyclic compounds.
Such inefficiency suggests that a triterpene may not cyclases ([16] and citations therein). Furthermore, the

cyclization products of squalene analogs can now betternecessarily be produced by one specific cyclase in an
organism. be predicted using this information ([15] and citations

therein). Significantly, this cocrystal structure has impli-An interesting feature of the SHC reaction is that its
high exothermicity of 40–50 kcal/mol exceeds by far the cations for the pharmaceutical sector, facilitating ratio-
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Figure 3. The Structure of 2-Azasqualene
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described as “explosions” of the mitotic apparatus (re-New Probes for Microtubule
viewed in [1]). Ed Taylor and coworkers used an affinity-Dynamics based approach to identify the protein target of colchi-
cine, and their research led to the discovery of tubulin
[2, 3]. This landmark work, carried out in the 1960s,
involved the use of a small molecule to unravel a key

A phenotype-based screen identifies a purine analog, biological mechanism. In appreciation of the similarity
named diminutol, that perturbs the microtubule cy- between such a strategy and conventional genetics, in
toskeleton in cells. An affinity-based approach identi- which one modulates protein function by introducing
fies a protein target of this small molecule and leads mutations in genes rather than by using cell-permeable
to the characterization of a new pathway that may small molecules, the term “chemical genetics” has been
regulate cytoskeleton dynamics. coined [4, 5]. Recently, several examples of the success-

ful application of chemical genetics in the examination
The treatment of cells with the small molecule colchi- of a range of biological processes have been reported
cine, a natural product, results in dramatic phenotypes (for example, see [6]). Using phenotype-based screens

and a battery of powerful in vitro and cell-based assays,in dividing cells. In early studies these phenotypes were


